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Summary 
 

Acylcarnitines are esters of 
L-carnitine that emerge from 
the fatty acid metabolism 
pathways in mitochondria 
and peroxisomes. 

 

Metabolomic profiling 
assays that investigate 
disease and nutrition states 
often include measurements 
of different acylcarnitines. This has resulted in 
increased interest regarding the consequences of 
increased or decreased plasma acylcarnitine 
concentrations and the mechanisms associated with 
these changes. An altered acylcarnitine metabolome is 
characteristic of specific inborn errors of fatty acid 
metabolism, and cardiovascular, metabolic, and 
neurological diseases in addition to some forms of 
cancer. Long-chain acylcarnitines accumulate under 
conditions of insufficient mitochondrial functionality 
reaching tissue levels that can affect enzyme and ion 
channel activities, and impact energy metabolism 
pathways and cellular homeostasis. 

 

A better understanding of biochemical and 
molecular mechanisms behind the changes in 
acylcarnitine levels and their physiological and 
pathological roles forms the basis for future 
therapeutic target selection and preclinical drug 
discovery. This may explain off-target effects of some 
clinically used drugs and point to new indications for 
repurposing. 
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1. Introduction 
 

Acylcarnitines are important fatty acid metabolites and biomarkers for the 
diagnosis of inherited diseases of fatty acid metabolism, insulin resistance, and heart 
failure (Dambrova et al 2022). A considerable number of metabolomic studies analyzing 
plasma/serum samples from different diseases and conditions have produced evidence 
regarding the involvement of acylcarnitines in mitochondrial energy metabolism and the 
pathogenesis of related diseases. For example, acylcarnitine profiling was suggested for 
better prediction of high-risk patients for progressive atherosclerosis-mediated diseases 
(Blair et al 2016). Alterations in acylcarnitines concentrations have been identified in 
different cancers (McCann et al 2021), insulin resistance, and cardiovascular events 
(Davies et al 2014; Albert, Tang 2018). The recently updated Human Metabolome 
Database now includes chemical structure information and biochemical pathway 
descriptions for 1240 acylcarnitines (Wishart et al 2022). However, the physiological role 
of all detected acylcarnitines is still not clear and more research is needed to understand 
the regulatory pathways of different acylcarnitines in health and disease. 

 
2. Sources of acylcarnitines 
 

Acylcarnitines are produced in the cell by conjugating an acyl group with L-carnitine 
by carnitine acyltransferases (Figure 1). Each acyltransferase transfers acyl-groups with 
different chain lengths to form respective short- (SC), medium- (MC) and long-chain (LC) 
acylcarnitines. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) synthesizes acylcarnitines 
with acyl group chain lengths of up to 8 carbons (Violante et al 2013). Carnitine O-
octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the transesterification of MC 
(C6-C12) and probably LC (>C12) acylcarnitines in peroxisomes to ensure the transport 
of acyl groups out of the peroxisome to the cytosol and mitochondria (Ferdinandusse et 
al 1999). Carnitine palmitoyltransferase 1 (CPT1, EC:2.3.1.21) is an enzyme in the 
mitochondrial outer membrane that converts LC acyl-CoA to their corresponding LC 
acylcarnitines and is the rate-limiting step in LC fatty acid oxidation in mitochondria 
(Finocchiaro et al 1990). CPT1 has two main isoforms specific to the liver and skeletal 
muscle, while in heart mitochondria both CPT1 isoforms are present. For further 
metabolism, acylcarnitines are transported into the mitochondrial matrix by 
carnitine/acylcarnitine translocase (CACT, SLC25A20), where carnitine 
palmitoyltransferase 2 (CPT2, EC:2.3.1.21) converts acylcarnitines to acyl-CoA for further 
β-oxidation (Rufer et al 2009). 

 

Plasma concentrations of specific acylcarnitines are used for the diagnosis of inborn 
fatty acid oxidation defects and acquired diseases caused by incomplete fatty acid 
metabolism (Rinaldo et al 2008; Wanders et al 2020). Acylcarnitines of differing chain 
lengths are transported into the bloodstream from different organs or tissues. The highest 
content of acylcarnitines is found in heart, skeletal muscle, and liver, all of which contain 
short-, medium-, and long-chain acylcarnitine species. However, the heart is the main 
contributor to the plasma medium- and long-chain acylcarnitine pool (Makrecka-Kuka et 
al 2017). Therefore, plasma LC acylcarnitine concentrations are valuable markers of 
cardiac acylcarnitine content and can be successfully used for the diagnosis of 
mitochondrial fatty acid metabolism disorders in the heart. 
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Figure 1. Sources of acylcarnitines (A) Synthesis of acylcarnitines in mitochondria and 
peroxisomes. (B) The main contributors delivering acylcarnitines to the plasma pool are 
the heart (long-chain), skeletal muscles (medium-chain) and liver (short-chain). CPT1: 
carnitine palmitoyltransferase 1; CPT2: carnitine palmitoyltransferase 2; pex-β-ox: 
peroxisomal β-oxidation; mt-β-ox: mitochondrial β-oxidation; LC AC: long-chain 
acylcarnitine; MC AC: medium-chain acylcarnitine; SC AC: short-chain acylcarnitine; 
CrAT: carnitine acetyltransferase; CrOT: carnitine O-octanoyltransferase; TCA: 
tricarboxylic acid cycle; CACT: carnitine/acylcarnitine translocase. 

 
In skeletal muscle, the fatty acid metabolism pattern is similar to the heart but the 

content of LC acylcarnitines is significantly lower. This is likely linked to skeletal muscle 
mainly contributing to the plasma availability of MC (C6-C12) acylcarnitines, but not LC 
acylcarnitines (Schooneman et al 2015; Xu et al 2016; Makrecka-Kuka et al 2017). 
Importantly, the liver is the main source of circulating acetyl- and propionyl-carnitines, 
while it does not release any acylcarnitines that are longer than four carbons (C4) 
(Schooneman et al 2015; Xu et al 2016).  
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3. Acylcarnitines in diseases 
 

Acylcarnitines are valuable biomarkers used for screening a series of genetic 
disorders that affect fatty acid oxidation and amino acid metabolism (Costanzo et al 2017; 
Wanders et al 2020). In addition, changes in acylcarnitine concentrations in the blood are 
linked to many acquired diseases (Table 1). Type 2 diabetes and heart failure are two 
diseases in which the blood concentrations of practically all types of acylcarnitines are 
elevated. Numerous studies show increased concentrations of SC (C2-C5), MC (C6-C12), 
LC (C13-C20) and hydroxyl‐/dicarboxyl‐chain acylcarnitines (Table 1). Moreover, 
increased levels of LC and hydroxyl‐/dicarboxyl‐chain acylcarnitines have been 
demonstrated in pulmonary arterial hypertension patients. Elevated blood 
concentrations of unsaturated-chain acylcarnitines with different fatty acid moiety 
lengths have been observed in patients with liver diseases and obesity. Increased blood 
concentration of acylcarnitines has been observed not only in the case of cardiometabolic 
diseases but also in the liver and central nervous system (e.g., chronic fatigue syndrome) 
disorders. 

 
Table 1. Acquired diseases with altered acylcarnitine (AC) levels in the blood 

Acylcarnitine type 
Concentration 

in blood 
Disease 

Short-chain AC 
increased 

Heart failure (Cheng et al 2015; Zordoky et al 2015), type 2 
diabetes (Mihalik et al 2010; Sun et al 2020) 

decreased 
CNS diseases (Kuratsune et al 1998; Cristofano et al 2016; 
Nasca et al 2018) 

Medium-chain AC 
increased 

Type 2 diabetes (Mihalik et al 2010; Batchuluun et al 2018), 
diastolic heart failure (Zordoky et al 2015) 

decreased 
Celiac disease (Bene et al 2005), tumors (Tan et al 2013; Xu et 
al 2013; Kim et al 2019; Park et al 2019) 

Long-chain AC 
increased 

Type 2 diabetes (Mihalik et al 2010; Zhang et al 2014), heart 
failure (Zordoky et al 2015; Hunter et al 2016), pulmonary 
arterial hypertension (Brittain et al 2016) 

decreased Intracerebral hemorrhage (Zhang et al 2017) 

Very-long-chain AC 
increased Type 2 diabetes (Zhang et al 2014) 

decreased Acute cerebral infarction (Zhang et al 2017) 

Unsaturated-chain 
AC 

increased 
Obesity and overweight (Wahl et al 2012; Schlueter et al 2020), 
liver diseases (Chen et al 2016; Miyaaki et al 2020) 

decreased Schizophrenia (Cao et al 2020) 

Branched-chain AC 
increased --- 

decreased Traumatic brain injury (Jeter et al 2013) 

Hydroxyl‐
/dicarboxyl‐chain 

AC 

increased 

Type 2 diabetes (Adams et al 2009; Hameed et al 2020), heart 
failure (Cheng et al 2015; Hunter et al 2016), pulmonary 
arterial hypertension (Mey et al 2020), chronic fatigue 
syndrome (Reuter, Evans 2011) 

decreased 
Traumatic brain injury (Jeter et al 2013), intracerebral 
hemorrhage (Zhang et al 2017), psoriasis (Ottas et al 2017; 
Chen et al 2021) 

 
Conversely, several diseases are characterized by decreased levels of 

acylcarnitines in the blood. Decreased blood levels of SC acylcarnitines have been 
observed in several central nervous system diseases: Alzheimer's disease (Cristofano et 
al 2016), major depressive disorder (Nasca et al 2018) and chronic fatigue syndrome 
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(Kuratsune et al 1998). In addition, LC, very-long-chain (>C21), unsaturated-chain, 
branched-chain, and hydroxyl‐/dicarboxyl‐chain acylcarnitine concentrations in blood 
are decreased in case of injury to the neurons of the central nervous system (e.g., 
traumatic brain injury or intracerebral hemorrhage) and schizophrenia (Table 1). Blood 
concentrations of MC acylcarnitines are decreased in celiac patients and patients with 
breast cancer (Park et al 2019), hepatocellular carcinoma (Kim et al 2019), colorectal 
cancer (Tan et al 2013) and esophageal squamous cell carcinoma (Xu et al 2013). 

 
4. Acylcarnitines and drugs 
 

Acylcarnitines are considered mitochondrial biomarkers for precision medicine for 
both inherited and acquired metabolic diseases, and drug-induced mitochondrial 
dysfunction (McCann et al 2021). More than 20 FDA-approved drugs are in trials 
(https://clinicaltrials.gov/) in which acylcarnitines are assessed as biomarkers or as a 
study outcome measure (Dambrova et al 2022). Acylcarnitine profile assessment is 
commonly used as an outcome measure in clinical trials of diabetes, insulin resistance, 
and obesity. 

 

Acylcarnitines are typically measured in studies not only with antihyperglycemic 
drugs, antihyperlipidemics, fatty acid analogs, carnitine supplements but also hormone 
replacements, and antidepressants (Dambrova et al 2022). Accumulation of LC 
acylcarnitines inhibits pyruvate metabolism and phosphorylation of protein kinase B, also 
known as Akt, thus impacting the molecular mechanisms of insulin signaling and leading 
to insulin resistance and hyperinsulinemia (Makrecka et al 2014; Liepinsh et al 2017). 
Several clinically known drugs for the treatment of insulin resistance, diabetes, and 
obesity in addition to their identified molecular target activities affect also acylcarnitine 
levels. Thus, the well-known diabetes drugs insulin, metformin, dipeptidyl peptidase-4 
(DPP-4) inhibitor vildagliptin, and glucagon-like peptide-1 (GLP-1) receptor agonist 
liraglutide impact energy metabolism homeostasis and induce changes in the 
acylcarnitine concentration profile (Table 2). 

 

Long-chain acylcarnitine assessment is of particular interest because their 
increased concentrations are detected in concurrence with dysfunctional fatty acid 
metabolism, particularly in mitochondria (Houten et al 2016). In addition, detrimental LC 
acylcarnitine accumulation disturbs mitochondrial function and energy metabolism in 
ischemia-reperfusion (Liepinsh et al 2016; Kuka et al 2017). At elevated concentrations, 
LC acylcarnitines inhibit oxidative phosphorylation in mitochondria, induce membrane 
hyperpolarization, and stimulate reactive oxygen species production (Dambrova et al 
2021). Therefore, it is not surprising that compounds that affect LC acylcarnitine levels 
rise in interest as potential mitochondria-protective and anti-ischemic drugs (Dambrova 
et al 2021). For example, the cardiometabolic drug meldonium decreases LC acylcarnitine 
levels and possesses anti-infarction and antiarrhythmic activity in preclinical models and 
is used clinically to treat heart failure (Rupp et al 2002; Liepinsh et al 2013). Other 
examples of acylcarnitine profile-affecting cardiovascular drugs include statins and 
sildenafil (Table 2). 
  

https://clinicaltrials.gov/
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Table 2. Examples of drugs affecting acylcarnitine levels 
Drug Target/mechanism Condition Effect on plasma 

acylcarnitines, 
sample origin 

References 

Insulin antidiabetic drug, 
insulin receptor 
agonist 

diet-induced obesity 
and type 2 diabetes 

↓C2; ↓C3; ↓C4; 
↓C5; ↓C6; ↓C8; 
↓C10:1; ↓C14:1; 
↓C16; ↓C18; 
↓C18:1, clinical 

(Mihalik et al 
2010) 

Metformin antidiabetic drug, 
multi-target 

diet-induced obesity 
and type 2 diabetes 

↑C4; ↑C18:1, 
preclinical 

(Tomasova et 
al 2019) 

Vildagliptin antidiabetic 
antihyperglycemic 
drug, inhibitor of DPP-
4 

diet-induced obesity 
and type 2 diabetes, 
preclinical 

↑C2; ↑C4, 
preclinical 

(Tomasova et 
al 2019) 

Liraglutide antidiabetic drug, GLP-
1 receptor agonist 

insulin resistance ↑C2; ↓C5; ↓C6; 
↓C8; ↓C12; ↓C14; 
↓C16, clinical 

(Hussein et al 
2021) 

Meldonium cardiometabolic drug, 
OCTN2 inhibitor 

ischemic heart 
disease 

↓C16, preclinical (Liepinsh et al 
2013; 
Dambrova et 
al 2016) 

Atorvastatin blood cholesterol-
lowering, 
cardiovascular disease 
prevention, HMG-CoA 
reductase inhibitor 

atherosclerosis, diet-
induced obesity 
preclinical 

↓C3; ↓C4; ↓C3-DC; 
↓C14:1-OH; ↓C18, 
preclinical 

(Ryan et al 
2017) 

Rosuvastatin blood cholesterol-
lowering, 
cardiovascular disease 
prevention, HMG-CoA 
reductase inhibitor 

hyperlipidemia ↓C18:2, clinical (Lee et al 
2018) 

Sildenafil erectile dysfunction, 
pulmonary arterial 
hypertension 
treatment, 
phosphodiesterase-5 
inhibitor 

heart failure with 
preserved ejection 
fraction 

↑C5-DC; ↑C10:1-
OH/C8:1-DC; 
↑C6-DC; ↑C16, 
clinical 

(Wang et al 
2017) 

Propofol intravenous anesthetic, 
GABA receptor agonist 

propofol-related 
infusion syndrome 

↑C3-DC, ↑C4, ↑C5, 
clinical 

(Wolf et al 
2001; Vollmer 
et al 2018) 

Acetaminophen nonsteroidal anti-
inflammatory drug, 
analgesic and anti-
fever, cyclooxygenase 
inhibitor 

acetaminophen 
toxicity, preclinical 

↑C16, ↑C18:1 
(Delta9-cis), 
↑C14, preclinical 

(Chen et al 
2009; 
Bhattacharyya 
et al 2013) 

C2 acetylcarnitine, C3 propionylcarnitine, C4 butyrylcarnitine, C5 valerylcarnitine, C6 caproylcarnitine, C8 
octanoylcarnitine, C10:1 decenoylcarnitine, C14:1 tetradecenoylcarnitine, C16 palmitoylcarnitine, C18 
stearoylcarnitine, C18:1 (Delta9-cis)oleoylcarnitine, C12 lauroylcarnitine, C14 myristoylcarnitine, C3-DC 
malonylcarnitine, C14:1-OH hydroxy-tetradecenoylcarnitine, C18:2 linoleoylcarnitine, C5-DC glutarylcarnitine, C10:1-
OH/C8:1-DC 3-hydroxy-decanoylcarnitine or suberoylcarnitine, C6-DC adipylcarnitine. 

 

Pathologically altered levels of acylcarnitines have been noted in some cases of 
drug-induced toxicity. The intravenous anesthetic propofol increased acylcarnitine levels 
in the peripheral blood of a patient and inhibited the electron transfer system of 
mitochondria (Table 2). High doses of acetaminophen (paracetamol) induced acute 
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increase in acylcarnitine levels in a preclinical study. Acylcarnitine profile measurements 
could be a method of choice to investigate mechanisms of suspected drug-induced 
mitochondrial dysfunction. 
 

In conclusion, some clinically approved cardiovascular and diabetes drugs (Table 2) 
reduce LC acylcarnitine concentrations in vivo and it would be worth investigating 
whether these compounds could be repurposed for the treatment of conditions induced 
by accumulation of LC acylcarnitine, such as cardiac arrhythmia during ischemia, insulin 
resistance, and in some cases of inherited fatty acid metabolism disorders. Currently, 
insulin and GLP-1 agonists are the most promising repurposing candidates for the 
treatment of diseases primarily or secondarily related to mitochondrial energy 
metabolism deficiency. It is expected that more metabolomics data will become available 
in the future, as metabolomics analysis of plasma samples collected during clinical trials 
become more affordable and popular, driving further the artificial intelligence and 
machine learning-supported drug repurposing and drug discovery. 

 
5. Conclusions 
 

Acylcarnitines emerge from mitochondrial energy metabolism and, if accumulated 
or deficient, play a pivotal role in the regulation of cellular energy homeostasis. More data 
on altered concentrations of acylcarnitines in human samples under physiological and 
pathological conditions are needed for a comprehensive understanding of their validity 
as biomarkers and the regulation of their plasma and tissue levels by dietary and 
pharmacological means to treat specific diseases. 
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AC 
CAC 
CACT 
CPT1 
CPT2 
CrAT 
CrOT 
DPP-4  

acylcarnitine 
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carnitine palmitoyltransferase 1 
carnitine palmitoyltransferase 2 
carnitine acetyltransferase 
carnitine O-octanoyltransferase 
dipeptidyl peptidase-4 

GABA 
GLP-1 
LC 
MC 
mt-β-ox 
OCTN2 
pex-β-ox 
SC 

gamma-aminobutyric acid 
glucagon-like peptide-1 
long-chain 
medium-chain 
mitochondrial β-oxidation 
organic cation/carnitine transporter 
peroxisomal β-oxidation 
short-chain 
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