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Summary 
 

This study investigates 
relationships between 
platelet mitochondrial 
bioenergetics and 
resting metabolic rate 
(RMR), body 
composition, and 
exercise fitness in 
older adult women. 
We report positive 
correlations between 

peak respiratory exchange ratio (RER) and RMR with 
five measures of platelet respiration, supporting the 
premise that blood cells can be utilized to report on 
mitochondrial function associated with physical 
health and fitness. Identifying mechanisms associated 
with physical performance among older adults 
supports the development of reliable biomarkers of 
healthy aging and can advance the development of 
efficacious interventions. 
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1. Introduction  
 

1.1. Age-related bioenergetic decline and physical function 
 

Mitochondrial dysfunction is a biological hallmark of aging implicated in multiple 
age-related diseases and disorders, including physical function decline and sarcopenia 
(López-Otín et al 2013; Lenaz et al 2000; Gonzalez-Freire et al 2018). Age-related skeletal 
muscle bioenergetic decline is marked by decreased mitochondrial density, ATP 
production, electron transfer system (ETS) capacity, and tricarboxylic acid cycle enzyme 
activity (Short et al 2005; Marzetti et al 2013). This decline in skeletal muscle 
bioenergetics is associated with decreased cardiopulmonary fitness, exercise fitness, and 
functional capacity (Coen et al 2013, Choi et al 2016; Tyrrell et al 2015).  
 

1.2. Resting metabolic rate 
 

Although physical activity comprises 15-30 % of daily energy expenditure, the major 
contributor to total energy expenditure is resting metabolic rate (RMR), which accounts 
for roughly 60 % of the body’s total energy demands and is determined by the body’s most 
metabolically active tissues (Ravussin, Bogardus 1989, Wang 2010). Although RMR has 
been extensively examined in relation with age, sex, body composition, and physical 
activity, few studies have examined the relationship between mitochondrial function and 
RMR (Larsen et al 2011; McMurray et al 2014). However, RMR was recently found to be 
associated with in vivo skeletal muscle oxidative capacity, suggesting a strong link 
between mitochondrial function and RMR (Edwards et al 2013; Zampino et al 2020). 
 

1.3. Blood-based bioenergetics and study goals 
 

The study presented here examines the relationship of platelet bioenergetics with 
resting metabolic rate and exercise capacity in community-dwelling, older adult women. 
Respirometric profiling of blood cells has emerged as a robust and innovative approach 
for assessing mitochondrial function in a minimally invasive manner (Molina 2017). 
There is mounting evidence that blood-based bioenergetic profiling can be utilized to 
report on systemic bioenergetic capacity and is related to mitochondrial function 
measured in other tissues (Nguyen et al 2019; Mahapatra et al 2018; Sjövall et al 2014). 
Our group has shown that blood cell respirometry correlates with skeletal and cardiac 
muscle respirometry (Tyrrell et al 2016). In particular, platelet mitochondrial function 
has been reported to be correlated with skeletal muscle mitochondrial function and 
exhibit bioenergetic changes associated with age in humans (Braganza et al 2019). 
Additional work has shown that alterations in platelet bioenergetics is related to sickle 
cell and Alzheimer’s disease (Cardenes 2014; Wilkins 2017) making platelet respirometry 
a valuable biomarker for mitochondrial dysfunction. Together, these data suggest that 
systemic bioenergetic measurements can be utilized to elucidate mitochondrial 
mechanisms underlying physical performance and disease. The goal of this study is to 
uncover whether platelet respirometry correlates with RMR, body composition, and 
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measures of exercise fitness in older adult women. While women have a longer life 
expectancy than men, they exhibit higher rates of frailty later in life.  Moreover, men 
continue to exhibit higher physical performance, even later in life (Hägg and Jylhävä 
2021).  

 
2. Materials and methods 
 

2.1. Participants 
 

Twenty-seven healthy older adult women (mean age = 70.2 years) were included in 
this study. Screening tests, including electrocardiogram, exercise echocardiogram, and 
spirometry, indicated that all participants were free from chronic medical illness, current 
health complaints, abnormal physical examination, and heart disease. Participants who 
regularly undertook vigorous exercise were excluded from this study. The protocol for 
this study was approved by the Wake Forest School of Medicine institutional review 
board, and all participants provided written, informed consent. 
 

2.2. Clinical measures 
 

RMR was measured using indirect calorimetry (MGC Diagnostics) for each 
participant after an overnight fast as previously described (Nicklas et al 2019). 
 

Exercise fitness was measured by cardiopulmonary exercise testing (CPET), an 
integrative assessment of exercise responses involving the pulmonary, cardiovascular, 
hematopoietic, neuropsychological, and skeletal muscle systems (Balady et al 2010, 
Albouaini et al 2007). Ventilatory and gas exchange responses were measured on a 
breath-by-breath basis (MGC Diagnostics, St. Paul, MN) using a treadmill ramp protocol 
to exhaustion as previously described (Nicklas et al 2019). We measured peak VO2, peak 

VCO2, and peak respiratory exchange ratio (RER), which is the ratio of carbon dioxide 
output to oxygen uptake (VCO2/VO2). 
 

Several body composition measurements, including BMI, lean mass, and fat mass 
were recorded. Lean mass and fat mass values were recorded using total body dual-
energy x-ray absorptiometry (DXA) on the Prodigy Scanner (General Electric, Madison, 
WI) as previously described (Nicklas et al 2019). 
 

2.3. Platelet isolation 
 

Acid citrate dextrose (ACD) tubes (Vacutainer; Becton Dickinson, Franklin Lakes, NJ) 
were used to collect venous blood from overnight-fasted participants. Samples were 
processed immediately to isolate platelets using previously described methods (Chacko 
2014). Briefly, whole blood was centrifuged (500 g, 15 min, room temperature). Platelet-
rich plasma was removed and centrifuged (1500 g, 10 min) to isolate platelets, washed in 
PBS with 1µM prostaglandin E1 (PGE1; Cayman Chemical, Ann Arbor, MI), centrifuged 
(1500 g, 7 min), and resuspended in MiR05 (Oroboros Instruments, Innsbruck, Austria) 
before high resolution respirometry. Cells were counted using the Coulter AC.Tdiff2 
machine (Beckman Coulter, USA). 
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2.4. High-resolution respirometry 
 

Platelet mitochondrial 
function was assessed by high-
resolution respirometry using 
the Oxygraph-2k (Oroboros 
Instruments, Innsbruck, 
Austria) at 37 C in MiR05, 
which provided a detailed 
analysis of respiratory pathway 
control and coupling control 
(Gnaiger 2020). The platelet 
concentration was 2∙108 cells 
per 2 mL chamber. Our protocol is depicted in Figure 1 and was comprised of the 
following injections (abbreviation; final concentration): catalase (Ctl; 280 U/mL), ADP (D; 
1 mM), magnesium (Mg; 0.6 mM), digitonin (Dig; 40 g/mL), octanoylcarnitine (Oct; 0.5 
mM), malate (M; 0.1 mM and 2 mM), cytochrome c (c; 0.01 mM), pyruvate (P; 5 mM), 
glutamate (G; 10 mM), succinate (S; 10 mM), and glycerophosphate (Gp; 10 mM). After, 
we titrated the uncoupler FCCP in 1 µM steps until maximal respiration is reached (2-5 
M). Finally, we added rotenone (Rot; 1 µM) and antimycin-A (Ama; 2.5 µM) to stop 
mitochondrial respiration (residual oxygen consumption, ROX). Although catalase was 
added to MiR05 as a precaution, reoxygenation was not needed in this protocol. It is also 
important to note that we used octanoylcarnitine to induce fatty acid oxidation (FP; 
described below) because of its ability to bypass the rate-limiting step CPT1-mediated 
transfer, though other fuels such as palmitoylcarnitine or octanoate may also be used.  
 

2.5. Statistical analysis  
 

We determined Pearson correlation coefficients r and partial correlations between 
respirometry measures and CPET, body composition, and calorimetry measures, 
including adjustments for age, BMI, and fat %. Regression lines were calculated according 
to inverted regression analysis (Gnaiger 2021).  

 
3. Results 
 

3.1. Participant characteristics and 
platelet respiration 

 

This study included 27 healthy older 
adult women (mean age 70.2  1.1 years). 
Platelet OXPHOS capacities P [amol∙s-1∙x-1] 
were measured for fatty acid oxidation (FP; 
0.194  0.017), F- & NADH(CI)-linked P (FNP; 
0.248  0.020), FN- & succinate-linked P 
(FNSP; 0.376  0.030), FNS- & 
glycerophosphate-linked P (FNSGpP; 0.450  
0.036) and the corresponding ET-capacity E 
(FNSGpE; 0.766  0.066; Table 1). These 
respiratory states have previously been 

Figure 1. Representative trace of high-resolution 
respirometry of platelets. 
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described as FAO, FAO+Complex I, FAO+Complex I+Complex II, Maximal Uncoupled 
Respiration, and Max ETS (Mahapatra 2018), respectively. Residual oxygen consumption 
was not subtracted from these values. We compared these measures of platelet 
respirometry to RMR, body composition measures (BMI, fat mass, and lean mass), and 
CPET measures (peak VO2, peak VCO2, and peak RER). 
 

Table 2. Correlations of platelet respirometry with RMR, fitness, and body comp.   
 Platelet respiration 

 FP FNP FNSP FNSGpP FNSGpE 

Calorimetry      

resting metabolic rate (RMR) .409* .537** .455* .436* .472* 

Cardiopulmonary exercise tests      

peak VO2 .076 .146 .208 .243 .249 

peak VCO2 .205 .268 .325 .351 .368 

peak RER .445* .475* .483* .480* .517** 

Body composition      

BMI -.147 -.069 -.170 -.223 -.175 

body total fat mass -.057 -.005 -.113 -.167 -.110 

body total lean mass .097 .272 .130 .078 .178 

body total fat percent -.171 -.200 -.278 -.310 -.298 

trunk-only fat percent -.155 -.185 -.242 -.274 -.239 
Pearson coefficients of correlation r values. *p ≤0.05; **p ≤0.01. 

 

Table 3. Adjusted correlations of platelet respirometry with RMR and peak RER 
 Platelet respiration 

 FP FNP FNSP FNSGpP FNSGpE 
RMR      

unadjusted .409* .537** .455* .436* .472* 

adjusted age .426* .541** .452* .429* .456* 

adjusted BMI .513** .599** .554** .554** .546** 

adjusted body total fat percent .431* .556** .482* .464* .488* 

Peak RER      

unadjusted .445* .475* .483* .480* .517** 

adjusted age .473* .478* .470* .460* .481* 

adjusted BMI .443* .470* .478* .475* .509** 

adjusted body total fat percent .432* .455* .463* .459* .496* 

Pearson coefficients of correlation r values. *p ≤0.05; **p ≤0.01 
 

 

Figure 2. Correlations of platelet bioenergetics and RMR. Y/X regression lines 
(dashed; lowest slope using ordinary least squares), ordinate projection of X/Y 
abscissal regression lines (dotted), and mean regression lines (full). Coefficients of 
determination r2 are independent of axis inversion. See Gnaiger (2021). 
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3.2. Relationships between platelet bioenergetics and resting metabolic rate 
 

We identified positive correlations between RMR and five measures of platelet 
respiration (Table 2; Figure 2). Controlling for age, BMI, and percent body fat, indicate 
that these covariates had little influence on the relationship between RMR and platelet 
respiration (Table 3).  
 
 

3.3. Relationships between platelet bioenergetics and measures of exercise fitness 
 

We also identified positive correlations between peak RER and five measures of 
platelet respiration (Table 2; Figure 3) using Pearson correlation analyses. Peak VO2 and 

peak VCO2 were not correlated with measures of platelet respiration. Controlling for age, 

BMI, and percent body fat, indicate that these covariates had little influence on the 
relationship between peak RER and platelet respiration (Table 3).  

 

3.4. Relationships between platelet bioenergetics and measures of body 
composition 

 

Relationships between fat % and FNSP (r=-0.278), maximum OXPHOS capacity 
(FNSGpP; r=-0.31), and maximum ET capacity (FNSGpE; r=-0.298) are reported in Table 2. 
Similar relationships were found between trunk fat % and FNSP (r=-0.242), FNSGpP (r=-
0.274) and FNSGpE (r=-0.239). While these correlations are trending, all have p-values 
greater than 0.05. 

 
4. Discussion 
 

This study examines platelet mitochondrial function in healthy older adult women. 
We found that peak RER and RMR are both positively correlated to all measures of platelet 
bioenergetic function examined, independent of body composition. We focused on 
platelets in this study as previous studies have indicated that platelet bioenergetic 
capacity is correlated to the bioenergetic capacity of peripheral tissues and is associated 
with physical function. In particular, prior work has indicated that maximal and ATP-
linked respirometry, specifically in older adults, is correlated with muscle maximal 
respiration that differs based on age (Braganza et al 2019). Studies suggest that 
investigating platelet bioenergetic capacity may serve as a supplement and/or surrogate 
for measurements derived from muscle biopsies. This also provides evidence that 
platelets from an older adult population are a good indicator of muscle bioenergetics and 
could also be indicative of differences in measurements of physical function and health.  

 

Age-related mitochondrial decline and its relationship to physical function has 
predominantly been studied in skeletal muscle due to the strong association between 

Figure 3. Correlations of platelet bioenergetics and peak RER. Regression lines are 
calculated as in Figure 2.  
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sarcopenia and physical function decline. Here, we build on prior literature by focusing 
on blood-based bioenergetics and the ability of blood cells to report on physical health. 
Our data are in line with reports that skeletal muscle bioenergetics are associated with 
RMR (Choi et al 2016; Tyrrell et al 2015). We also found a strong relationship between 
platelet bioenergetics and peak RER, which has not been previously reported (Knuiman 
et al 2021). Together, these new findings contribute to our understanding of how blood-
based bioenergetic profiling relates to physical fitness and exercise physiology. 
 

RER is the ratio of carbon dioxide output to oxygen uptake (VCO2/VO2). At higher 

exercise intensity, increased lactate buildup associated with anaerobic metabolism 
contributes to a disproportionate increase in VCO2 that brings RER to values >1 (Balady et 

al 2010; Milani 2006). Thus, peak RER can be used as a reliable, quantitative measure of 
maximal exercise effort. Our findings indicate that platelet maximum ET capacity 
(FNSGpE) most strongly correlates to maximal exercise effort. Additional measures of 
platelet respirometry, such as fatty acid oxidation as well as individual complex function, 
also correlate positively to maximal exercise effort.  
 

Interestingly, we did not observe an association between platelet bioenergetics and 
peak VO2, which has been previously found to be related to skeletal muscle bioenergetics 

(Knuiman et al 2021; Coen et al 2013; Distefano et al 2017; Gonzalez-Freire 2018). While 
this finding has been previously reported in skeletal muscle, but not blood, it should be 
noted that the women enrolled in this study were all healthy older adults with similarly 
high levels of fitness. The small range and sample size suggest that we may not have been 
adequately powered to observe this relationship. Future studies should be designed to 
determine if platelet bioenergetics are associated with RMR and exercise capacity in both 
men and women, over a larger age range to assess differences across lifespan. Further, 
other circulating cell types (monocytes, lymphocytes, etc.) were not evaluated in this 
study, but similar relationships may exist.  
 

Overall, these findings suggest that energy expenditure (both during rest and 
physical activity) are related to systemic mitochondrial function. These data can be used 
as a foundation to study how potential interventions, such as diet and exercise, may lead 
to improvements in both mitochondrial function as well as resting metabolic rate and 
other measures of physical fitness. Blood-based bioenergetic profiling, a minimally-
invasive technique, can be used to track improvements and changes in exercise fitness in 
clinical studies. 

 
5. Conclusions 
 

In this study, we report positive correlations across five measures of platelet 
respirometry with both peak RER and RMR, thus contributing to a growing body of 
evidence indicating that our minimally-invasive evaluation of mitochondrial function 
relates to physical health. Blood-based bioenergetic profiling may serve as a reliable 
biomarker of mitochondrial health among older adults and may be utilized to test efficacy 
and identify targets of interventions designed to promote the health and well-being of 
older adults. 
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